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bstract

Femtosecond laser pulse control of exciton dynamics in a biological chromophore complex is studied theoretically. The computations use the
ptimal control theory specified to open quantum systems and formulated in the framework of the rotating wave approximation. Based on the

aser pulse induced formation of an excitonic wave packet the possibility to localize excitation energy at a certain chromophore within a photo-
ynthetic antenna system (FMO complex of green bacteria) is investigated. Details of exciton dynamics driven by a polarization shaped pulse are
iscussed.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Femtosecond laser pulse control techniques have been
emonstrated for numerous types of molecules extending from
imple diatomics to complex polyatomic systems (see [1–5] and
or a recent review [6–8]). So far, however, there only exist a
ingle example where these techniques have been applied to
hromophore complexes in order to guide intra-molecular elec-
ronic excitation energy. Ref. [9] describes such an experiment to
iscriminate between internal conversion and excitation energy
ransfer taking place among a carotenoid and a bacteriochloro-
hyll (BChl) molecule of the light harvesting antenna LH2 of
urple bacteria.

A theoretical description of femtosecond laser pulse control
f electronic excitation energy has been given by us in a series
f papers focusing on spatial localization of Frenkel excitons in
hromophore complexes [10–14]. On the one-hand these studies
epresent an advanced application of the optimal control theory
OCT) in an open system dynamics framework. On the other
and they suggest experiments to achieve a laser pulse guided

ocalization of excitation energy in a chromophore complex at
certain time what, afterwards, allows to study different relax-

tion pathways in the complex. The central idea behind it is
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elated to the well-known fact that Frenkel excitons are spatially
elocalized excited states. They read:

α〉 =
∑
m

Cα(m)|φm〉 (1)

ith the basic electronic excitations |φm〉, however, com-
letely localized at the individual chromophores of the complex
counted by the index m). Then, excitation energy localization
t a single chromophore at a definite time may be achieved by
he photo-induced formation of an excitonic wave packet, i.e.
he creation of a time-dependent superposition of the various
xciton states:

Ψ (t)〉 =
∑
α

Aα(t)|α〉. (2)

n a linear response regime and after the laser pulse (with electric
eld-strength E) has passed by the exciton state populations
xpressed by the square of the expansion coefficients simply
ead [10]:

α = |Aα|2 = 1

h̄2 |dαE(Ωα)|2. (3)
he expression contains the product of the exciton transition
ipole moments dα with the Fourier-transformed field-strength
aken at a frequency which corresponds to the exciton energy
Ωα.
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Fig. 1. The chromophore complex energy level scheme. The central part dis-
plays a two-level model for the chromophores (tetrapyrrole type molecules)
arranged to a planar complex. Beside the electronic ground-state energy Eg

(not shown) every chromophore is characterized by its first excited state (the
Qy state of BChl-a) with energy Ee. A single chromophore may be excited by
photo-absorption (vertical dashed arrows). Excitation as well as de-excitation is
also possible by the Coulombic inter-chromophore coupling Jmn (vertical full
arrows). The coupling to the intra- and inter-molecular vibrations results in a
modulation of all energies E and coupling matrix elements J. The upper left part
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The wave packet introduced in Eq. (2) has to be formed in
uch a way that it corresponds to excitation energy localization
t a particular chromophore m and at a particular final time tf:

Ψ (tf)〉 = |φm〉. (4)

n order to generate this superposition state in a sufficient flex-
ble way, it should be possible to excite all exciton states with
omparable efficiency (see Eq. (3)). Therefore, the oscillator
trength has to be distributed over all exciton states |α〉. This need
xcludes the use of highly symmetric complexes for such stud-
es. For an appropriate non-regular structure, however, different
ransition dipole moments dα into exciton state may also posses
ifferent spatial orientations. This would favor excitation with a
aser field which temporally changes its spatial orientation (per-
endicular to the propagation direction) i.e. its polarization. Such
polarization shaping [16](see also [17]) would increase the
exibility for adjusting the various coupling expressions dαE(t)

o the adequate value at the right time interval to achieve proper
ave packet formation.
In Refs. [12,14], we demonstrated the advantages of laser

ulse control with polarization shaping versus the use of a linear
olarized field. These earlier studies also accounted for spatial
nd energetic disorder. Here, we concentrate on the case where
isorder is absent and give a detailed analysis of the exciton
ynamics induced by the optimized laser pulse. While static
isorder can be controlled to a certain extent (by the system
reparation) dynamic disorder will be always present. Therefore,
xciton relaxation and dephasing originated by the presence of
xciton–vibrational coupling have to be accounted for in any
ase. When carrying out numerical simulations these have to
e based on the (reduced) exciton density matrix. At weak and
ntermediate excitation conditions as already shown in Ref. [10]
he whole description can be reduced to the single exciton man-
fold. The related control task will be solved using the OCT. An
mportant point of the following discussion will be the combi-
ation of the rotating wave approximation (RWA) with the open
ystem variant of OCT.

In the subsequent section some basic relation for dissipative
xciton dynamics are recalled. Section 3 combines the RWA
ith the OCT and Section 4 presents some results.

. Exciton dynamics in biological chromophore
omplexes

In the general case of photo-excitation of non biological com-
lexes as well as photosynthetic antenna systems one has to use
he multiexciton scheme [18–20]. Here, as in Ref. [10], we con-
ider an excitation regimes which allows a description restricted
o single exciton states, Eq. (1). The respective basic model
pplied in the following is explained in Fig. 1 and the related
hromophore complex Hamiltonian reads [10,15,20–23]:
CC(t) = H0 + Hex + Hex–vib + Hvib + Hfield(t). (5)

he electronic ground-state Hamiltonian of the complex
s given by H0 = E0|0〉〈0| (with the overall energy E0).
he Hamiltonian Hvib accounts for the vibrational motion

i
s
t

hows the manifold of exciton levels with energies Eα = h̄Ωα resulting from a
uperposition of singly excited states of the complex (the full arrow indicates
ptical excitation).

n the ground-state (with intra- as well as inter-molecular
ontributions). The exciton Hamiltonian Hex considers all inter-
hromophore Coulombic interactions (often used in the form
f a dipole–dipole coupling). Its diagonalization (with the
ibrational coordinates fixed at their ground-state equilibrium
onfiguration) results in

ex =
∑
α

h̄Ωα|α〉〈α|. (6)

he exciton vibrational coupling part is taken in the most basic
ersion:

ex–vib =
∑
α,β

∑
ξ

h̄ωξgαβ(ξ)Qξ|α〉〈β|, (7)

hich can be understood as the result of a normal-mode
escription of all vibrations (with frequencies ωξ , dimension-
ess coordinates Qξ and exciton–vibrational coupling constants
αβ(ξ)). For such a case Hvib describes decoupled harmonic
scillators. Often, a vibrational modulation of the inter-
hromophore coupling is neglected. More involved formulas
s well as the derivation of the gαβ(ξ) can be found in, e.g.,
3,21,22]. The Hamiltonian Hfield(t) describing the coupling to
he radiation field E(t) is written in the standard form:

field(t) = −μ̂E(t), (8)

here the chromophore complex dipole operator μ̂:

ˆ =
∑
α

dα|α〉〈0| + h.c. (9)
ncludes the dipole matrix elements dα (all parameters neces-
ary to specify the model to the FMO-complex of Chlorobium
epidum can be found in Refs. [30–32]).
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To apply the RWA we write the field-strength as

(t) = 1

2
e−iω0t

∑
j

njEj(t) + c.c.

≡
∑

j

nj|Ej(t)| cos(ω0t − ϕj(t)). (10)

he two unit vectors nj correspond to the two linear polarization
irections of the field (j = x, y), and the Ej(t) are the respective
eld envelopes (ϕj(t) denotes the phase). The common carrier
requency is given by ω0.

The description of the light-driven exciton dynamics at the
resence of relaxation and dephasing caused by the vibrational
oordinates requires the introduction of the density operator ρ̂(t)
educed to the electronic degrees of freedom. To invoke the RWA
n expansion with respect to multiples of the carrier frequency
0 is carried out:

ˆ (t) =
∞∑

n=−∞
e−inω0t ρ̂(n)(t). (11)

his expansion changes the density operator equation
ρ̂(t)/∂t + iL(t)ρ̂(t) ≡ f̂ (t) = 0 to an expression of type

n exp(−inω0t)f̂ (n)(t) = 0 with the f̂ (n)(t) depending on the
ensity operator expansion coefficients ρ̂(n)(t) and the field
nvelopes. In order to get the RWA one assumes a time depen-
ence of the f̂ (n)(t) which is slow compared to the oscillations
ith multiples of ω0. We introduce the vectorial field amplitude:

(t) =
∑

j

njEj(t), (12)

nd obtain equations of motion for the expansion coefficients of
he density operator by setting f̂ (n)(t) = 0. This yields:

∂

∂t
ρ̂(n)(t) = −inω0ρ̂

(n)(t) − i

h̄
[H0 + Hex, ρ̂

(n)(t)]−

+ D̂(n)(t, t0; ρ̂) + i

2h̄
e(t)[μ̂, ρ̂(n−1)(t)]−

+ i

2h̄
e∗(t)[μ̂, ρ̂(n+1)(t)]−. (13)

he first and the second term on the right-hand side describe
reversible (coherent) type of dynamics. Dissipation has been

ccounted for by the operator D̂(t, t0; ρ̂) which might depend on
ˆ in a time-nonlocal way. It changes to D̂(n)(t, t0; ρ̂) after the
xpansion, Eq. (11) has been carried out. The coupling to the
adiation field is considered by the last term. (Setting f̂ (n)(t) = 0
ould become problematically when dissipation is so fast to be
n the same time-scale as the laser field oscillations.)

The RWA is obtained if all terms in Eq. (13) which are oscil-
ating with multiples of ω0 are neglected. Then, the exciton

ensity matrix is determined by the zero-order element of ρ̂(n)(t),
.e.:

αβ(t) = 〈α|ρ̂(0)(t)|β〉, (14)
T
o
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he respective equation of motion follows from f̂ (0)(t) = 0. The
o-called exciton coherences, however, are given as

α0(t) = 〈α|ρ̂(−1)(t)|0〉, (15)

s well as

∗
α0(t) = 〈0|ρ̂(1)(t)|α〉 (16)

ith the equations of motion f̂ (−1)(t) = 0 and f̂ (1)(t) = 0,
espectively. It is not necessary to additionally introduce
he ground-state population ρ00(t) = 〈0|ρ̂(0)(t)|0〉 since it is
btained from the probability conservation as ρ00(t) = 1 −

αραα(t).
There are different ways to further specify Eq. (13), i.e. to

ive explicit expressions for D̂(n)(t, t0; ρ̂), which are well docu-
ented in literature (for a recent overview see [13,23]). Usually

ne carries out a second order approximation with respect to the
xciton–vibrational coupling. The correlation time of the vibra-
ional equilibrium correlation function should be short enough
o allow for a neglect of non-Markovian contributions, and the
aser pulse field strength has to be of reasonable intensity to
xclude contributions to D̂(n)(t, t0; ρ̂). Finally, the spectra of the
xciton states have to be anharmonic to neglect the coupling
etween diagonal and off-diagonal density matrix elements.
his all results in the following particular version of the Marko-
ian quantum master equation (note Ωαβ = Ωα − Ωβ):

∂

∂t
ραβ(t) = −iΩαβραβ(t) + δαβ

∑
γ

[−kαγραα(t) + kγαργγ (t)]

− (1 − δαβ)[Γα + Γβ]ραβ(t) + i

2h̄
[dαe∗(t)ρ∗

β0(t)

− d∗
βe(t)ρα0(t)] (17)

nd

∂

∂t
ρα0(t) = i[ω0 − Ωα + iΓα]ρα0(t) + i

2h̄
e∗(t)[dαρ00(t)

−
∑
β

dβραβ(t)]. (18)

ote that E0 introduced in relation to Eq. (5) has been set equal
o zero. The dephasing rates:

α = 1

2

∑
β

kαβ + Γ̂α (19)

nclude pure dephasing rates Γ̂α and the energy relaxation rates
n(Ω) being the Bose distribution):

αβ = 2πΩ2
αβ[1 + n(Ωαβ)]

∑
m

|Cα(m)Cβ(m)|2[Jm(Ωαβ)
− Jm(Ωβα)]. (20)

he site-local spectral densities Jm(ω) are approximated by an
verall spectral density J(ω) which does not depend on the
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oncrete site. It reads (for parameters see [22]):

m(ω) = je

5∑
ν=1

ω2

2ω3
ν

exp

(
− ω

ων

)
. (21)

he pure dephasing rates Γ̂α can be calculated in the same way
see, e.g. [3]). Here, however, we take a common number for all
xciton levels.

. Optimal control theory in the RWA

Theoretical simulations of laser pulse control experiments
re mainly carried out in the framework of the optimal control
heory (OCT) [1–3,8]. It allows to compute the laser pulse (the
ontrol field) which optimizes the observable O measured in the
articular control experiment (taking place in the time interval
rom t0 up to tf and under the constraint of a finite laser pulse
ntensity). This well established approach is modified here to the
pplication of the RWA (see also [25]). In order to do this we,
rst, note the dependence of the so-called control functional on

he vectorial field amplitude e (and e∗), Eq. (12):

(e, e∗) = O[e, e∗] − λ

∫ tf

t0

dt|e(t)|2
η(t)

. (22)

he second term represents the constraint to ensure finite control
eld intensity and the quantity λ is a Lagrange multiplier (the

ime dependent function η(t) = 1 − {1 − 2t/(tf − t0)}8 has been
ntroduced to smoothly switch on and off the control field). In the
ollowing, we avoid to adopt the field to the predetermined inten-
ity but fix λ by a reasonable value (and, if necessary, determine
he related intensity after the control task has been solved).

The observable to be optimized is given by the excited state
opulation of the target chromophore mtar and follows as

[e, e∗] = Ptar(tf) = 〈φmtar |ρ̂(0)(t)|φmtar〉. (23)

he field pulse resulting in an extremum of O will be called the
ptimal pulse (field). Its determination is achieved by searching
or the extremum of J, Eq. (22) via the solution of

δJ

δe∗(t)
= δPtar

δe∗(t)
− λe(t)

η(t)
= 0. (24)

ne obtains a functional equation which solution fixes the
emporal behavior of the optimal pulse (self-consistency con-
ition for the optimal field). To obtain δPtar(tf)/δe∗

j we first
ake the derivative of 〈φmtar |ρ̂(t)|φmtar〉 and afterwards introduce
he expansion Eq. (11). Using earlier derived results [25–27] it
ollows:

δ

δe∗(t)
〈φmtar |ρ̂(t)|φmtar〉

= −1

h̄
trex

{
|φmtar〉〈φmtar |U(tf, t)

[
∂Hfield(t)

∂e∗(t)
, ρ̂(t)

]
−

}

= i

2h̄
eiω0t trex{θ̂(t)[μ̂, ρ̂(t)]−}. (25)

ote the introduction of the time-evolution superoperatorU(tf, t)
escribing the propagation of the reduced density operator from

s
t
m
w
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ime t to time tf at the presence of the control field. Here, it
ropagates the commutator of ρ̂(t) with the partial derivative of
he field Hamiltonian, Eq. (8). Such a derivative results from
he functional derivative with respect to e∗(t). The respective
xpression is given in the last line of Eq. (25). The trace denoted
y trex{. . .} has to be taken with respect to the exciton states
α〉 and the chromophore complex ground-state |0〉. As in the
ase of OCT using pure-state dynamics we replace the propaga-
ion symbolized by U(tf, t) by a backward propagation in time
f |φmtar〉〈φmtar | resulting in the auxiliary density operator θ̂(t)
26–29]. Its carrier frequency expansion as well its matrix ele-
ents are defined similar to Eq. (11), (14)–(16). The equations

f motion (17) and (18) have to be taken in a somewhat modified
orm to achieve stable backward propagation [10,26,27,29].

To change to the RWA version of Eqs. (24) and (25) we
ompute the trace formula and neglect all oscillating terms. It
ives:

(t) = i

2h̄λη(t)

∑
α

dα(θ0α(t; e, e∗)ρ00(t; e, e∗)

− θ00(t; e, e∗)ρ0α(t; e, e∗) +
∑
β

[θβα(t; e, e∗)ρ0β(t; e, e∗)

− θ0β(t; e, e∗)ρβα(t; e, e∗)]). (26)

o stress the self-consistent character of this relation with respect
o the vectorial field envelope e(t) the dependence of all density

atrix elements on the right-hand side on the envelopes are
hown. If inserted into the Eqs. (17) and (18)(and respective
quations for θ) coupled nonlinear density matrix equations are
btained which can be solved iteratively [26–29].

. Excitation energy localization in the FMO complex

The present consideration continues our earlier calculations
f Ref. [10–14] in focusing on details of the laser pulse driven
xcitation energy localization as well as on the specific feature of
sing a polarization shaped control field. To arrive at a clear view
n the effect of polarization shaping we neglect inhomogeneous
roadening and orientational averaging (this may correspond to
patially aligned complexes in a homogeneous environment).
nstead, we may assume a particular orientation of the FMO
omplex relative to the incoming pulse which should be polar-
zion shaped (see Fig. 2). The latter has the duration of 400 fs
nd for applying the RWA the carrier frequency of the pulse is
ut into the center of the excitonic absorption band at 810 nm.
he target is given by chromophore m = 6.

Fig. 3 displays the target population Ptar(t) as well as the two
omponents of the polarization shaped control field. To get ref-
rence data the calculations have been carried out at the absence
f dissipation. As it is obvious from the temporal evolution of
he target population three steps of population and depopulation
re needed to achieve, at least, a nearly 100% control yield. We

tress that population and depopulation is mainly an effect exci-
onic wavepacket motion. Any return to the ground-state is of

inor importance (see also Fig. 4). Note also that the RWA as
ell as the complete solution of the density matrix equations
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Fig. 2. Excitation of the FMO complex of Chlorobium tepidum by an optimized
polarization shaped laser pulse. The pulse moves in z-direction (from the left
to the right) and is represented by the temporal evolution of the electric field
strength vector E(t) (oscillating perpendicular to the propagation direction, see
also Figs. 3 and 4). The spatial arrangement of the seven BChls in the monomeric
FMO complex [24] has been displayed without the protein matrix. Exciton
transition dipole moments dα as well as dipole moments within the BChl are
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Fig. 4. Upper panel: temporal evolution of the exciton state populations ραα

driven by the optimized pulse and resulting in excitation energy localization in
chromophore m = 6 (the control task and the dynamics are identical with those
shown in the Figs. 2 and 3). The right part of the figure represents the square
o

lso shown. To localize excitation energy at the target BChl (m = 6) it is most
mportant to excite the exciton levels α = 4 and 6, i.e. to address the respective
ipole moments.

ive the same result. Since those simulations based on the RWA
re free of contributions oscillating with the carrier frequency a
arger time-step can be used (in the present case 5 fs instead of
.2 fs leading to a 35 times faster computation).

Before discussing Fig. 3 in more detail we change to Fig. 4
hich shows the populations Pα(t) = ραα(t) versus time as well

s the various coupling expressions dαE(t) of the optimal field
ith the excitonic transition dipole moments (the importance of

hese expressions has been already stressed in Eq. (3). To achieve
tar ≈ 1 for m = 6 and at tf = 400 fs the exciton populations
α(t) have to coincide with the square of the exciton expansion
oefficients |Cα(6)|2. The respective values are also drawn in

ig. 4 indicating the dominance of Cα=4(6) and Cα=6(6). And,

ndeed, the Pα arrive in the close vicinity of these values at t = tf.
To get some deeper insight into the laser pulse driven dynam-

cs we first note that all the Figs. 2–4 indicate the presence of

ig. 3. Temporal evolution of the target site population Ptar (m = 6) as well as
f the x- and y-component of the optimal field (calculations have been carried
ut at the absence of dissipation, the vectorial field-strength is also displayed in
ig. 2). Results for the RWA are given by dashed lines with the optimal field
epresented by the absolute values of the envelopes (see Eq. (10)).
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f the expansion coefficients |Cα(m = 6)|2 (which values have to be reached
y ραα at t = tf). Lower panel: products of the optimized field with the various
xciton dipole moments (the maximum value of dα=4E corresponds to 0.01 eV).

hree sub-pulses which also let oscillate the target population
hree times to achieve a large control yield. These three subpulses
f projected into the x- and y-direction of the field-strength are out
f phase and of different duration (see Fig. 3). As shown in Fig. 2
t results a rotating electric field vector. For t > 300 fs, however,
he x-component dominates realizing a strong coupling to the
ourth exciton state (Fig. 4 displays a large value of dα=4E(t)).
ut contributions to other exciton states are also important as

s shown by the other coupling expressions dα�=4E(t). These
uantities together with the populations Pα(t) (shown in the
pper panel of Fig. 4) indicate the formation of an excitonic
avepacket with the participation of all exciton states.
Moreover, Fig. 5 indicates the importance of polarization

haping versus the use of a linearly polarized control field. The
atter is less flexible in forming the excitonic wavepacket and
esults in the present case in a about 20% smaller control yield.
s it has been already underlined in our former studies [10,12]
ny account for dissipation reduces the control yield. The insert
f Fig. 5 displays a 50% reduction when considering vibrational
elaxation and dephasing at a temperature of 77 K. However, a
olarization shaped control field remains more efficient than a



B. Brüggemann et al. / Journal of Photochemistry and

F
i
a

l
a
a

5

t
p
s
o
w
i
d
t
t
c
a
r
c
s
b

A

D

R

[

[
[

[

[

[

[

[
[

[

[
[
[
[

[

[

[
[

[
[

[
Miller, H. van Amerongen, T.J. Aartsma, J. Phys. Chem. B 102 (1998)
ig. 5. Comparison of the population of the target chromophore using polar-
zation shaped pulses (solid lines) and x-polarized pulses (dashed lines) at the
bsence of dissipation, and with dissipation at 77 K.

inearly polarized one. If energetic disorder in the complexes
nd in particular a random spatial orientation is included the
dvantage of a polarization shaped control field is reduced [12].

. Conclusions

Excitation energy localization at a single chromophore of
he monomeric FMO-complex by tailored femtosecond laser
ulses has been investigated theoretically in extending earlier
tudies. Based on the dissipative quantum dynamics formulation
f the optimal control theory (OCT) the localization efficiency
as discussed. Emphasis has been put on polarization shap-

ng of the control field and on details of the resulting exciton
ynamics. Moreover, it has been demonstrated how to combine
he OCT with the Rotating Wave Approximation. If dissipa-
ion is neglected the high flexibility of the polarization shaped
ontrol field to address every exciton level and to form an
ppropriate excitonic wavepacket could be demonstrated. The
esults again stress the importance of polarization shaping when
onsidering laser pulse control of systems where the different
tates involved in the wavepacket formation are characterized
y dipole moments with different orientation in space.
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